Antimicrobial resistance is one of the biggest health problem, especially in the current period of COVID-19 pandemic. Due to the unique membrane-destruction bactericidal mechanism, antimicrobial peptide-mimetic copolymers are paid more attention and it is urgent to find more potential candidates with broad-spectrum antibacterial efficacy and low toxicity. Artificial intelligence has shown significant performance on small molecule or biotech drugs, however, the higher-dimension of polymer space and the limited experimental data restrict the application of existing methods on copolymer design. Herein, we develop a universal random copolymer inverse design system via multi-model copolymer representation learning, knowledge distillation and reinforcement learning. Our system realize a high-precision antimicrobial activity prediction with few-shot data by extracting various chemical information from multi-modal copolymer representations. By pre-training a scaffold-decorator generative model via knowledge distillation, copolymer space are greatly contracted to the near space of existing data for exploration. Thus, our reinforcement learning algorithm can be adaptive for customized generation on specific scaffolds and requirements on property or structures. We apply our system on collected antimicrobial peptide-mimetic copolymers data, and we discover candidate copolymers with desired properties.
translated by 谷歌翻译
Video super-resolution is one of the most popular tasks on mobile devices, being widely used for an automatic improvement of low-bitrate and low-resolution video streams. While numerous solutions have been proposed for this problem, they are usually quite computationally demanding, demonstrating low FPS rates and power efficiency on mobile devices. In this Mobile AI challenge, we address this problem and propose the participants to design an end-to-end real-time video super-resolution solution for mobile NPUs optimized for low energy consumption. The participants were provided with the REDS training dataset containing video sequences for a 4X video upscaling task. The runtime and power efficiency of all models was evaluated on the powerful MediaTek Dimensity 9000 platform with a dedicated AI processing unit capable of accelerating floating-point and quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 500 FPS rate and 0.2 [Watt / 30 FPS] power consumption. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
我们调查来自两个或更多重叠的网络摄像头流的3D场景重建的可能性。大量,增长,网络摄像头数目观察兴趣的地方,并可公开访问。自然出现的问题:我们可以使用此免费数据源进行3D计算机愿景吗?事实证明,从网络摄像头流中重建场景结构的任务与标准结构 - 从 - 动作(SFM)非常不同,传统的SFM管道失败。在网络摄像头设置中,在大多数情况下,相同场景的观点很少,只有两个。这些观点通常具有大的基线和/或比例差异,它们的重叠相当有限,除了未知的内部和外部校准之外,它们的时间同步也未知。另一方面,它们在长期跨越时不断录制相当大的视野,因此他们定期观察通过场景的动态对象。我们展示了如何利用最近的计算机愿景领域的进步,以适应SFM重建对此特定场景并重建未知的相机姿势,3D场景结构和动态对象的3D轨迹。
translated by 谷歌翻译
消耗的湖冰是气候变化指标,就像海平面上升或冰川静修一样。监测冰冰物候(LIP)是有用的,因为长期冻结和融化模式充当了哨兵,以了解区域和全球气候变化。我们报告了一项针对瑞士奥伯伦加丁地区的研究,那里有几个中小型山区湖泊。我们从光学卫星图像中观察到唇部事件,例如冻结,分手和冰盖持续时间(2000-2020)。我们通过对这些高山湖泊的湖泊冰层估算有监督的机器学习的空间分辨图来分析MODIS图像的时间序列。为了训练分类器,我们依靠基于网络摄像头图像手动注释的参考数据。从冰图中,我们得出了长期的唇部趋势。由于网络摄像头数据仅适用于两个冬季,因此我们与操作MODIS和VIIRS SNOW PRODUCTS进行了交叉检查结果。我们发现,对于湖泊和西瓦普拉纳(Lakes Sils)和Silvaplana,每年的完全冻结持续时间为-0.76和-0.89天。此外,我们观察到唇部趋势与在附近气象站测得的气候数据的合理相关性。我们注意到,平均冬季空气温度与冻结持续时间和分手事件以及与冻结事件的正相关性具有负相关性。此外,我们观察到在冬季,阳光与冻结持续时间和分手事件之间存在很强的负相关性。
translated by 谷歌翻译
磁共振光谱(MRS)是揭示代谢信息的无创工具。 1H-MRS的一个挑战是低信号噪声比(SNR)。为了改善SNR,一种典型的方法是用M重复样品进行信号平均(SA)。但是,数据采集时间相应地增加了M次,并且在公共环境M = 128时,完整的临床MRS SCAN大约需要10分钟。最近,引入了深度学习以改善SNR,但大多数人将模拟数据用作培训集。这可能会阻碍MRS应用程序,因为某些潜在差异(例如获取系统的缺陷)以及模拟和体内数据之间可能存在生理和心理条件。在这里,我们提出了一种新方案,该方案纯粹使用了现实数据的重复样本。深度学习模型,拒绝长期记忆(RELSTM),旨在学习从低SNR时间域数据(24 SA)到高SNR ONE(128 SA)的映射。对7个健康受试者,2名脑肿瘤患者和1名脑梗塞患者的体内脑光谱进行实验表明,仅使用20%的重复样品,RelstM的DeNoed Spectra可以为128 SA提供可比的代谢物。与最先进的低级别去核法相比,RELSTM在量化某些重要的生物标志物时达到了较低的相对误差和cram \'er-rao下限。总而言之,RELSTM可以在快速获取(24 SA)下对光谱进行高保真降级,这对MRS临床研究很有价值。
translated by 谷歌翻译
Multimodal deep learning has been used to predict clinical endpoints and diagnoses from clinical routine data. However, these models suffer from scaling issues: they have to learn pairwise interactions between each piece of information in each data type, thereby escalating model complexity beyond manageable scales. This has so far precluded a widespread use of multimodal deep learning. Here, we present a new technical approach of "learnable synergies", in which the model only selects relevant interactions between data modalities and keeps an "internal memory" of relevant data. Our approach is easily scalable and naturally adapts to multimodal data inputs from clinical routine. We demonstrate this approach on three large multimodal datasets from radiology and ophthalmology and show that it outperforms state-of-the-art models in clinically relevant diagnosis tasks. Our new approach is transferable and will allow the application of multimodal deep learning to a broad set of clinically relevant problems.
translated by 谷歌翻译
Most recent studies on neural constituency parsing focus on encoder structures, while few developments are devoted to decoders. Previous research has demonstrated that probabilistic statistical methods based on syntactic rules are particularly effective in constituency parsing, whereas syntactic rules are not used during the training of neural models in prior work probably due to their enormous computation requirements. In this paper, we first implement a fast CKY decoding procedure harnessing GPU acceleration, based on which we further derive a syntactic rule-based (rule-constrained) CKY decoding. In the experiments, our method obtains 95.89 and 92.52 F1 on the datasets of PTB and CTB respectively, which shows significant improvements compared with previous approaches. Besides, our parser achieves strong and competitive cross-domain performance in zero-shot settings.
translated by 谷歌翻译
The success of Deep Learning applications critically depends on the quality and scale of the underlying training data. Generative adversarial networks (GANs) can generate arbitrary large datasets, but diversity and fidelity are limited, which has recently been addressed by denoising diffusion probabilistic models (DDPMs) whose superiority has been demonstrated on natural images. In this study, we propose Medfusion, a conditional latent DDPM for medical images. We compare our DDPM-based model against GAN-based models, which constitute the current state-of-the-art in the medical domain. Medfusion was trained and compared with (i) StyleGan-3 on n=101,442 images from the AIROGS challenge dataset to generate fundoscopies with and without glaucoma, (ii) ProGAN on n=191,027 from the CheXpert dataset to generate radiographs with and without cardiomegaly and (iii) wGAN on n=19,557 images from the CRCMS dataset to generate histopathological images with and without microsatellite stability. In the AIROGS, CRMCS, and CheXpert datasets, Medfusion achieved lower (=better) FID than the GANs (11.63 versus 20.43, 30.03 versus 49.26, and 17.28 versus 84.31). Also, fidelity (precision) and diversity (recall) were higher (=better) for Medfusion in all three datasets. Our study shows that DDPM are a superior alternative to GANs for image synthesis in the medical domain.
translated by 谷歌翻译
Harvesting question-answer (QA) pairs from customer service chatlog in the wild is an efficient way to enrich the knowledge base for customer service chatbots in the cold start or continuous integration scenarios. Prior work attempts to obtain 1-to-1 QA pairs from growing customer service chatlog, which fails to integrate the incomplete utterances from the dialog context for composite QA retrieval. In this paper, we propose N-to-N QA extraction task in which the derived questions and corresponding answers might be separated across different utterances. We introduce a suite of generative/discriminative tagging based methods with end-to-end and two-stage variants that perform well on 5 customer service datasets and for the first time setup a benchmark for N-to-N DialogQAE with utterance and session level evaluation metrics. With a deep dive into extracted QA pairs, we find that the relations between and inside the QA pairs can be indicators to analyze the dialogue structure, e.g. information seeking, clarification, barge-in and elaboration. We also show that the proposed models can adapt to different domains and languages, and reduce the labor cost of knowledge accumulation in the real-world product dialogue platform.
translated by 谷歌翻译
Talking face generation aims at generating photo-realistic video portraits of a target person driven by input audio. Due to its nature of one-to-many mapping from the input audio to the output video (e.g., one speech content may have multiple feasible visual appearances), learning a deterministic mapping like previous works brings ambiguity during training, and thus causes inferior visual results. Although this one-to-many mapping could be alleviated in part by a two-stage framework (i.e., an audio-to-expression model followed by a neural-rendering model), it is still insufficient since the prediction is produced without enough information (e.g., emotions, wrinkles, etc.). In this paper, we propose MemFace to complement the missing information with an implicit memory and an explicit memory that follow the sense of the two stages respectively. More specifically, the implicit memory is employed in the audio-to-expression model to capture high-level semantics in the audio-expression shared space, while the explicit memory is employed in the neural-rendering model to help synthesize pixel-level details. Our experimental results show that our proposed MemFace surpasses all the state-of-the-art results across multiple scenarios consistently and significantly.
translated by 谷歌翻译